STRUCTURAL CALCULATIONS

Project:
Chan Addition
7036 81st Ave SE
Mercer Island, WA 98040

Architect:

Wascha Studios
815 Seattle Blvd South \#135
Seattle, WA 98134

Structural Engineer:

Harriott Valentine Engineers, Inc.
1932 First Avenue, Suite 720
Seattle, WA 98101
tel. 206-624-4760

Harriott Valentine Engineers Inc.

SECTION 1: GENERAL

Harriott Valentine Engineers Inc.

CRITERIA

Gravity

roof	dead	asphalt shingles	2.5	live snow	25.0 psf
		1/2" plywood	1.5		
		R30 insulation	1.2		
		11-7/8" TJI 110 @ 16"oc	1.9		
		5/8" gyp. wallboard	2.8		
		slope factor	0.1		
		miscellaneous	2.0 17\%		
			12.0 psf		
	total	dead + live	37.0 psf		
deck	dead	Existing 2×10 @ 16"oc	2.8	live deck	60.0 psf
		Existing decking	1.0		
		miscellaneous	1.2 24\%		
			$5.0 \mathrm{psf}$		
	total	dead + live	65.0 psf		
	total	dead + live	65.0 psf		
walls		1/2" plywood	1.5		
		2x6 @ 16"oc	1.7		
		R21 insulation	0.8		
		1/2" gyp. wallboard	2.2		
		miscellaneous	0.8 11\%		
			7.0 psf		

Lateral

wind	wind importance factor basic wind speed wind exposure topographical factor (Kzt)	$\begin{gathered} 1.0 \mathrm{mph} \\ 110 \\ \text { B } \\ 1.60 \end{gathered}$	
seismic	seismic importance factor latitude longitude mapped spectral response accel. at short periods (Ss)	$\begin{array}{r} 1.0^{\circ} \\ 47.540^{\circ} \\ -122.230 \mathrm{~g} \\ 1.467 \end{array}$	(from USGS)
	seismic design category response modification factor (R)	$\begin{array}{r} D \\ 6.5 \end{array}$	

Harriott Valentine Engineers Inc.

SECTION 2: FRAMING

Beam Map

Harriott Valentine Engineers Inc.

BEAMS (SIMPLE SPAN UNIFORM LOAD)

ROOF

(live)	
total load $=$	37 psf
live load $=$	25 psf

location	criteria		demand		
R8			0.28 k		
	$w($ total $)=$	296 plf		$V=$	0.37 k
	w (live) =	200 plf	$\mathrm{M}=$	0.23 k -ft	
	L =	2.50 ft	El (total) =	$2.08 \mathrm{E}+06 \mathrm{lb}-\mathrm{in} 2$	
	trib. $=$	8.00 ft	El (live) =	$2.11 \mathrm{E}+06 \mathrm{lb}-\mathrm{in} 2$	
location	criteria		demand		
				0.07 k	
R9	$w($ total $)=$	74 plf	$V=$	0.09 k	
	w (live) $=$	50 plf	$\mathrm{M}=$	0.06 k-ft	
	L =	2.50 ft	El (total) =	$5.20 \mathrm{E}+05 \mathrm{lb}$-in2	
	trib. $=$	2.00 ft	El (live) =	$5.27 \mathrm{E}+05 \mathrm{lb}-\mathrm{in} 2$	

capacity		
$\mathrm{Vr}=$	1.65 k	
$\mathrm{Mr}=$	$1.60 \mathrm{k}-\mathrm{ft}$	
$\mathrm{El}=$	$5.41 \mathrm{E}+07 \mathrm{lb}-\mathrm{in} 2$	
d (total) $=$	$0.00 \mathrm{in}=\mathrm{L} /$	6239
d (live) $=$	$0 \mathrm{in}=\mathrm{L} /$	9233

use
(2) 2×6
capacity

$\mathrm{Vr}=$	1.05 k	
$\mathrm{Mr}=$	$0.75 \mathrm{k}-\mathrm{ft}$	
$\mathrm{El}=$	$1.39 \mathrm{E}+07 \mathrm{lb}-\mathrm{in2}$	
d (total) $=$	$0.00 \mathrm{in}=\mathrm{L} /$	6412
d (live) $=$	$0.00 \mathrm{in}=\mathrm{L} /$	9489

use
capacity
$\mathrm{Vr}=$
$\mathrm{Mr}=$
$\mathrm{EI}=$
d (total) $=$
d (live) $=$
use
(2) 2×6

Marriott Valentine Engineers Inc.

R_{2}

RB

$$
\begin{array}{lll}
V=0.49 \mathrm{k} & V_{r}=1.56 \mathrm{k} . & \text { USE TI } 110 \mathrm{l1} / 8 \text { e } 16^{\circ} \mathrm{OC} \\
M=22 \mathrm{kff} & M_{r}=3.16 \mathrm{k} \text { FF } & \Delta=0.63^{\prime \prime}=L / 374 .
\end{array}
$$

ROOF FRAMING (CONT.)

RF.

$$
\begin{array}{ll}
V=0.27 k & V_{r}=1.56 k \\
M=0.49 k \mathrm{ft} & M_{r}=3.16 k \mathrm{ft}
\end{array}
$$

16

$$
\begin{array}{ll}
V=0.31 \mathrm{k} & V_{r}=1.56 \mathrm{k} \\
M=0.91 \mathrm{kft} & M_{r}=3.16 \mathrm{kft}
\end{array}
$$

$$
\text { USE TS } 110 \text { } 11 / 8 \text { \& } 16^{\prime \prime} \circ \mathrm{C} \text {. }
$$

$$
\begin{array}{ll}
V=0.68 \mathrm{k} & V_{r}=4.0 \mathrm{k} \\
M=3.1 \mathrm{kft} & M_{r}=8.9 \mathrm{kft}
\end{array}
$$

$$
\text { USE LVI } 13 / 4 \times 117 / 8
$$

RIO

$$
\begin{array}{ll}
V=5.3 \mathrm{k} & V_{r}=4.66 \mathrm{k} \\
M=4.4 \mathrm{kft} & M_{i}=6.06 k \mathrm{ft}
\end{array}
$$

USE (2) 2×12.

Harriott Valentine Engineers Inc.

ROOF FRAMING (CONT)
N.

R13

$$
\begin{array}{lll}
V=0.48 k & V_{r}=1.9 k & \text { USE (2) } 2 \times 6 . \\
M=0.48 k & M_{r}=1.6 k \mathrm{ft} &
\end{array}
$$

R14

$V=1.0 . \mathrm{k}$
$V_{r}=2.5 k$
$M=1.3 \mathrm{kft} . \quad M_{r}=2.57 \mathrm{kft}$

R15.

$V=0.8 k$
$V_{r}=3.2 k$
USE (2) 2×10.

Marriott Valentine Engineers Inc.

ROOF FRAMING (CONT.)

K 17

$$
\begin{array}{ll}
V=0.23 k & V_{r}=1.21 k \\
m=0.55 k \mathrm{ft} & M_{*}=0.75 \mathrm{kft}
\end{array}
$$

USE (2) 2×4 e $24^{\circ} O C$.

Harriott Valentine Engineers Inc.

BEAMS (SIMPLE SPAN UNIFORM LOAD)

EXISTING DECK

(live)

total load $=$	65 psf
live load $=$	60 psf

location	criteria		demand		capacity		
				0.40 k			
Ex. Deck joists	$w($ total $)=$	86 plf	$\mathrm{V}=$	0.42 k	$\mathrm{Vr}=$	1.39 k	
	w (live) =	80 plf	$\mathrm{M}=$	$1.04 \mathrm{k}-\mathrm{ft}$	$\mathrm{Mr}=$	1.92 k-ft	
	L =	9.83 ft	El (total) =	$3.70 \mathrm{E}+07 \mathrm{lb}-\mathrm{in} 2$	El $=$	$1.29 \mathrm{E}+08 \mathrm{lb}-\mathrm{in} 2$	
	trib. $=$	1.33 ft	El (live) =	$5.12 \mathrm{E}+07 \mathrm{lb}-\mathrm{in} 2$	d (total) $=$	0.14 in = L/	835
					d (live) $=$	0.13 in = L/	905

use 2×10 @ 16"oc

Harriott Valentine Engineers Inc.

SECTION 3: LATERAL

Harriott Valentine Engineers Inc.

SEISMIC DESIGN

ASCE 7-10
Equivalent Lateral Force Procedure

Occupancy Category	II	Table 1-1
Seismic Design Category	D	Table 11.6-1
Importance Factor	1.00	Table 11.5-1
Site Class	D	Table 20.3-1
Ss	146.70 \%g	(from USGS Seismic Hazard Curves, 2008 data)
S1	50.70 \%g	(from USGS Seismic Hazard Curves, 2008 data)
Fa	1.00	Table 11.4-1
Fv	1.50	Table 11.4-2
Ct_{t}	0.02	Table 12.8-2
x	0.75	Table 12.8-2
h_{n}	13.50 feet	(height to highest level)
Sms $=\mathrm{Fa}$ *Ss	1.4670	Eq. 11.4-1
$\mathrm{Sm}_{\mathrm{M}}=\mathrm{Fv}^{*}$ S1	0.7605	Eq. 11.4-2
Sds $=(2 / 3) *$ Sms	0.9780 g	Eq. 11.4-3
$S_{\text {d1 }}=(2 / 3) *$ SM1	0.5070 g	Eq. 11.4-4
Period $\mathrm{Ta}_{\text {a }}=\mathrm{Ct}^{*} h_{n}{ }^{\wedge} \mathrm{x}$	0.1409 s	Eq. 12.8-7
To	0.1037 s	per section 11.4.5
Ts	0.5184 s	per section 11.4.5
Sa	0.9780 g	per section 11.4.5
R	6.5	Table 12.2-1
תo	2.5	Table 12.2-1
Cd	4	Table 12.2-1
Section 9.5.5 ok?	Yes	Table 12.6-1
Equivalent Lateral Force Procedure (section 12.8)		
Cs	0.1505	Eq. 12.8-2
W, weight	32,040 lb	per table below
Q_{E}	$4,821 \mathrm{lb}$	Eq. 12.8-1

Vertical Force Distribution (section 12.8.3)
$\mathrm{k}=1.00$

| | | Floor | Seismic | Floor | Wall | Wall | Total | | | $($ LRFD $)$ | $($ ASD $)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level | Hx | Area | Dead Ld | Wt. | Length | Wt. | Wt. | WxHx | Cvx | Q_{E} | $0.7 \mathrm{Q}_{\mathrm{E}}$ |
| | (ft) | $(\mathrm{ft2})$ | (psf) | (k) | (ft) | (k) | (k) | $(\mathrm{k}-\mathrm{ft})$ | $(\%)$ | (k) | (k) |
| Roof $(\mathrm{S} 2.3)$ | 13.50 | 1950 | 12 | 23.4 | 160 | 8.6 | 32.0 | 432.5 | 100.0 | 4.82 | 3.37 |

7036 81st Ave SE, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5400417, -122.2302872

DISCLAIMER
While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Harriott Valentine Engineers Inc.

WIND DESIGN

ASCE 7-10

Simplified Envelope Method (Chapter 28)

```
\(\mathrm{ps}=\lambda \mathrm{KztI} \mathrm{ps} 30\)
```

$\lambda=$ adjustment factor $=$	1.00
I = importance factor $=$	1.00
Kzt = topographic factor $=$	1.60
Zone	
Computation	

$a=10 \%$ of least horizontal dimension or $0.4 \times \mathrm{h}$, whichever is smaller, but not less than either 4\% of least horizontal dimension or 3 feet.

$\mathrm{w}=$	$51.50 \mathrm{ft} \times 0.1=$	5.15 ft
$\mathrm{h}=$	$13.50 \mathrm{ft} \times 0.4=$	5.40 ft
$\mathrm{w}=$	$51.50 \mathrm{ft} \times 0.04=$	2.06 ft
$\mathrm{a}=$	5.20 ft	
$2 \mathrm{a}=$	10.40 ft	

Zone B - end zone of roof Zone A - end zone of wall

Zone D - interior zone of roof
Zone C - interior zone of wall
Part of Figure 28.6-1 - Method 2
Design Wind Pressure, ps30

Basic	Roof	Roof	Horizontal Pressures (psf)			
Speed	Angle	Pitch	A	B	C	D
110	0 to 5	flat	19.2	-10.0	12.7	-5.9
	10	2	21.6	-9.0	14.4	-5.2
	15	3	24.1	-8.0	16.0	-4.6
	20	4	26.6	-7.0	17.7	-3.9
	25	6	24.1	3.9	17.4	4.0
	30 to 45	7 to 12	21.6	14.8	17.2	11.8

Design Wind Pressure, ps

$\begin{aligned} & \hline \text { Basic } \\ & \text { Speed } \end{aligned}$	Roof Angle	Roof Pitch	Horizontal Pressures (psf)			
			A	B	C	D
110	0 to 5	flat	30.7	-16.0	20.3	-9.4
	10	2	34.6	-14.4	23.0	-8.3
	15	3	38.6	-12.8	25.6	-7.4
	20	4	42.6	-11.2	28.3	-6.2
	25	6	38.6	6.2	27.8	6.4
	30 to 45	7 to 12	34.6	23.7	27.5	18.9

Wind Demand

Longitudinal Wind Pressure

North Elevation
$\mathrm{A}=30.7 \mathrm{psf}$
$B=16.0$
$C=20.3$
D $=9.4$
$\min =16$
Transverse Wind Pressure

East Elevation

Lateral Load Distribution

LATERAL FORCE DISTRIBUTION

East-West
Walls Below Roof
va' $=$ allowable shear values multiplied by ($1.25-0.125$ * $\mathrm{h} / \mathrm{l})$
$\mathrm{va}^{\mathrm{a}}=$ allowable shear values multiplied by $(1.25-0.125 * \mathrm{~h} / \mathrm{)}$
for wall aspect ratios greater than $2: 1$, and only for seismic

WALL						WIND			MIC																
	$\frac{\mathrm{L}}{(\mathrm{ft})}$	$\begin{array}{r} \mathrm{h} \\ (\mathrm{ft}) \end{array}$	h/l	$\left(\frac{F}{(b)}\right.$	(abv)	$\underset{\text { (total) }}{\underline{\mathrm{V}}}$	$(\mathrm{p} \mid \mathrm{f})$	SW	$\frac{F}{(\mathrm{Fb})}$	(abv)	$\underset{\text { (total) }}{\underline{\mathrm{V}}}$	$(\mathrm{p} \mid \mathrm{f})$	va'	SW	SW	$\frac{\mathrm{M} \text { ot }}{(\mathrm{lbft})}$	$\frac{\mathrm{M} \text { ot }}{(\mathrm{abv})}$	$\begin{array}{r} \mathrm{M} \text { ot } \\ \text { (total) } \end{array}$	$\frac{\mathrm{OT}}{(\mathrm{lb})}$	$\frac{\mathrm{DL} \text { max }}{(\mathrm{Ib})}$	(lb)	HD	$\frac{\mathrm{TL}}{(\mathrm{lb})}$	$\left.\frac{\mathrm{C}}{\mathrm{C}}\right)$	POST
S1	5.25	9.50	1.81	770	0	770	147	SW1	540	0	540	134	N/A	SW1	SW1	7315	0	7315	1393	105	1289	HDU2	0	1393	(2)2×6
S2	7.25	10.50	1.45	649	0	649	90	SW1	671	0	671	120	N/A	SW1	SW1	9158	0	9158	1263	160	1103	HDU2	0	1263	(2)2x6
S4	9.50	10.50	1.11	851	0	851	90	SW1	879	0	879	120	N/A	SW1	SW1	12000	0	12000	1263	209	1054	HDU2	0	1263	(2)2×6
S5	13.83	8.50	0.61	2021	0	2021	146	SW1	1894	0	1894	178	N/A	SW1	SW1	20925	0	20925	1513	247	1266	HDU2	0	1513	(2)2×6
S6	5.67	8.50	1.50	829	0	829	146	SW1	776	1	777	178	N/A	SW1	SW1	8590	0	8590	1515	101	1414	HDU2	0	1515	(2)2x6
S7	2.67	8.50	3.18	320	0	320	120	SW1	325	2	327	159	187	SW1	SW1	3610	0	3610	1352	48	1304	HDU2	0	1352	(2)2x6
S8	9.83	8.50	0.86	1180	0	1180	120	SW1	1195	3	1198	158	N/A	SW1	SW1	13242	0	13242	1347	175	1172	HDU2	0	1347	(2)2x6

North-South
Walls Below Roof

[^0]Harriott Valentine Engineers Inc.

SECTION 4: FOUNDATION

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Project Name/Number : Chan
Title Entry stair walls
Page: 1
Dsgnr: HAN

Description....
4.5 ft retained

This Wall in File: P:\Active Jobs\Chan\Engineering\4-Foundation\Chan ADU.RPX

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Entry stair walls
Page: 2
Dsgnr: HAN
Date: 11 SEP 2020
Description....
4.5 ft retained

This Wall in File: P:\Active Jobs\Chan\Engineering\4-Foundation\Chan ADU.RPX

RetainPro (C) 1987-2019, Build 17.19.07.30
LLicense: KW-06655574,
License To :HARIOTT VALENTINE
Concrete Stem Rebar Area Details

Cantilevered Retaining Wall
Code: UBC 1997
License: KW-06055874
License To : HARRIOTT VALENTINE

Concrete Stem Rebar Area Details

Horizontal Reinforcing
Min Stem T\&S Reinf Area 0.672 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.144 in2/ft
Horizontal Reinforcing Options :
One layer of : Two layers of :
\#4@16.67 in \#4@ 33.33 in
\#5@ 25.83 in \#5@ 51.67 in
\#6@ 36.67 in \#6@ 73.33 in

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 12.34 in, \#5@ 19.13 in, \#6@ 27.15 in, \#7@ 37.03 in, \#8@ 48.76 in, \#9@ 6
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined

Min footing T\&S reinf Area
Min footing T\&S reinf Area per foot
If one layer of horizontal bars:
\#4@ 12.35 in
\#5@ 19.14 in
\#5@ 38.27 in

Use menu item Settings > Printing \& Title Block
 to set these five lines of information
 for your program.

Project Name/Number : Chan
Title Entry stair walls
Page: 3
Dsgnr: HAN
Date: 11 SEP 2020
Description....
4.5 ft retained

This Wall in File: P:\Active Jobs\Chan\Engineering\4-Foundation\Chan ADU.RPX

License To : HARRIOTT VALENTINE
Summary of Overturning \& Resisting Forces \& Moments

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.051 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Harriott Valentine Engineers Inc.

SPREAD FOOTING DESIGN -- SQUARE

for 2000 psf Allowable Bearing Pressure
$\begin{array}{rr}\mathrm{f} ' \mathrm{c}= & 2,500 \mathrm{psi} \\ \mathrm{fy}= & 40 \mathrm{ksi}\end{array}$
1'-6" square
$\mathrm{P}=\quad 4.50 \mathrm{k} \quad$ one-way:
$\mathrm{Pu}=\quad 7.34 \mathrm{k} \quad$ phi $\mathrm{Vc}=7.09 \mathrm{k} \quad \mathrm{Vu}=\quad 1.53 \mathrm{k} \quad$ o.k.
$p=\quad 2,000 \mathrm{psf} \quad$ (2) \#4 each way
$\mathrm{h}=\quad 9.00 \mathrm{in} \quad$ phi $\mathrm{Mn}=\quad 6.05 \mathrm{k}-\mathrm{ft} \quad \mathrm{Mu}=\quad 1.38 \mathrm{k}-\mathrm{ft} \quad$ o.k.
$\mathrm{d}=\quad 5.25 \mathrm{in}$
$\mathrm{b}=\quad 18.00$ in two-way:
bo $=\quad 35.00$ in \quad phi $\mathrm{Vc}=31.24 \mathrm{k} \quad \mathrm{Vu}=\quad 5.60 \mathrm{k} \quad$ o.k.

2'-0" square						
$\mathrm{P}=$	8.00 k	one-way:				
$\mathrm{Pu}=$	13.04 k	phi Vc =	9.45 k	V u =	3.67 k	o.k.
$\mathrm{p}=$	2,000 psf	(3) \#4 eac	way			
$\mathrm{h}=$	9.00 in	phi $\mathrm{Mn}=$	9.03 k -ft	$\mathrm{Mu}=$	3.26 k-ft	o.k.
$\mathrm{d}=$	5.25 in					
$b=$	24.00 in	two-way:				
bo =	35.00 in	phi $\mathrm{Vc}=$	31.24 k	$\mathrm{V} u=$	11.31 k	o.k.

2'-6" square						
$\mathrm{P}=$	12.50 k	one-way:				
$\mathrm{Pu}=$	20.38 k	phi $\mathrm{Vc}=$	11.81 k	$\mathrm{V} \mathbf{u}=$	6.62 k	o.k.
$\mathrm{p}=$	2,000 psf	(3) \#4 eac	way			
$\mathrm{h}=$	9.00 in	phi $\mathrm{Mn}=$	9.11 k-ft	$\mathrm{Mu}=$	6.37 k-ft	o.k.
$\mathrm{d}=$	5.25 in					
$\mathrm{b}=$	30.00 in	two-way:				
$\mathrm{bo}=$	35.00 in	phi $\mathrm{Vc}=$	31.24 k	$\mathrm{V} \mathbf{u}=$	18.64 k	o.k.
3'-0" square						
$\mathrm{P}=$	18.00 k	one-way:				
$\mathrm{Pu}=$	29.34 k	phi Vc =	14.18 k	$\mathrm{Vu}=$	10.39 k	o.k.
$\mathrm{p}=$	2,000 psf	(5) \#4 eac	way			
$\mathrm{h}=$	9.00 in	phi $\mathrm{Mn}=$	14.95 k-ft	$\mathrm{Mu}=$	$11.00 \mathrm{k}-\mathrm{ft}$	o.k.
d =	5.25 in					
$\mathrm{b}=$	36.00 in	two-way:				
bo =	35.00 in	phi Vc =	31.24 k	V u $=$	27.61 k	o.k.

Anchor Designer ${ }^{\text {TM }}$ Software
Version 2.8.7094.10

HDU2 Anchors

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 0.625
Effective Embedment depth, hef (inch): 22.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 24.13
$\mathrm{C}_{\text {min }}$ (inch): 1.38
$\mathrm{S}_{\text {min }}$ (inch): 2.50

Project description:
Location:
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 26.00
State: Uncracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V}:} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: No
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Ignore 6do requirement: Yes
Build-up grout pad: No

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5 (5/8"Ø)

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [lb]: 1414
$V_{\text {uax }}$ [lb]: 0
$V_{\text {uay }}$ [lb]: 0
<Figure 1>

1414 lb

Anchor Designer ${ }^{\text {TM }}$
Software
Version 2.8.7094.10
<Figure 2>

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Software
 Version 2.8.7094.10

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\sqrt{ }\left(\mathrm{V}_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	1414.0	0.0	0.0	0.0
Sum	1414.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 1414
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $n x$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e' Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (lb)
13100	0.75	9825

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)
$N_{b}=16 \lambda_{a} \sqrt{ } f_{c}^{\prime} h_{e f}^{5 / 3}$ (Eq. 17.4.2.2b)

λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{e f}($ in $)$	$N_{b}(\mathrm{lb})$
1.00	2500	6.000	15849

$\phi N_{c b}=\phi\left(A_{N_{c}} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1a)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$C_{a, \min }(\mathrm{in})$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c \rho, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi N_{c b}(\mathrm{lbb})$
249.75	324.00	4.00	0.833	1.25	1.000	15849	0.70	8908

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{p n}=\phi \Psi_{c, P} N_{p}=\phi \Psi_{c, P} 8 A_{b r g} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{b r g}\left(\right.$ in $\left.^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$\phi N_{\text {pn }}(\mathrm{lb})$
1.4	2.10	2500	0.70	41121

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.8.7094.10

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$\phi N_{s b}=\phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \mathcal{f}^{\prime}{ }_{c}($ Sec. $17.3 .1 \&$ Eq. 17.4.4.1)

$C_{\mathrm{a} 1}$ (in)	$C_{\mathrm{a} 2}$ (in)	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	f_{c}^{\prime} (psi)	ϕ	$\phi N_{\text {sb }}(\mathrm{lb})$
4.00	9.00	2.10	1.00	2500	0.70	26362

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Nua}_{\mathrm{a}}(\mathrm{Ib})$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	1414	9825	0.14	Pass
Concrete breakout	$\mathbf{1 4 1 4}$	$\mathbf{8 9 0 8}$	$\mathbf{0 . 1 6}$	Pass (Governs)
Pullout	1414	41121	0.03	Pass
Side-face blowout	1414	26362	0.05	Pass

PAB5 (5/8"Ø) with hef $=22.000$ inch meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.

Anchor Designer ${ }^{\text {TM }}$ Software
Version 2.8.7094.10 HDU8 Anchors

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 0.625
Effective Embedment depth, hef (inch): 22.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 24.13
$\mathrm{C}_{\text {min }}$ (inch): 1.38
$\mathrm{S}_{\text {min }}$ (inch): 2.50

Project description:
Location:
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 26.00
State: Uncracked
Compressive strength, f_{c} (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: No
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Ignore 6do requirement: Yes
Build-up grout pad: No

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5 (5/8"Ø)

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [lb]: 4525
$V_{\text {uax }}$ [lb]: 0
$V_{\text {uay }}$ [lb]: 0
<Figure 1>

Z

Anchor Designer ${ }^{\text {TM }}$
Software
Version 2.8.7094.10
<Figure 2>

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Software
 Version 2.8.7094.10

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\sqrt{ }\left(\mathrm{V}_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	4525.0	0.0	0.0	0.0
Sum	4525.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 4525
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $n \times$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e' Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{s a}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (bb)
13100	0.75	9825

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)
$N_{b}=16 \lambda_{a} \sqrt{ } f_{c}^{\prime} h_{e f}^{5 / 3}$ (Eq. 17.4.2.2b)

λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{e f}($ in $)$	$N_{b}(\mathrm{lb})$
1.00	2500	6.000	15849

$\phi N_{c b}=\phi\left(A_{N c} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1a)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$C_{a, \min }(\mathrm{in})$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c \rho, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi N_{c b}(\mathrm{lbb})$
249.75	324.00	4.00	0.833	1.25	1.000	15849	0.70	8908

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{p n}=\phi \Psi_{c, P} N_{p}=\phi \Psi_{c, P} 8 A_{b r g} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{b r g}\left(\right.$ in $\left.^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$\phi N_{\text {pn }}(\mathrm{lb})$
1.4	2.10	2500	0.70	41121

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.8.7094.10

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$\phi N_{s b}=\phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \mathcal{f}^{\prime}{ }_{c}($ Sec. $17.3 .1 \&$ Eq. 17.4.4.1)

$C_{\mathrm{a} 1}$ (in)	$C_{\mathrm{a} 2}$ (in)	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	f_{c}^{\prime} (psi)	ϕ	$\phi N_{\text {sb }}(\mathrm{lb})$
4.00	9.00	2.10	1.00	2500	0.70	26362

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Nua}^{\prime}(\mathrm{Ib})$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	4525	9825	0.46	Pass
Concrete breakout	4525	8908	$\mathbf{0 . 5 1}$	Pass (Governs)
Pullout	4525	41121	0.11	Pass
Side-face blowout	4525	26362	0.17	Pass

PAB5 (5/8"Ø) with hef $=22.000$ inch meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.

[^0]: ro $=1.30$ per ASCE 7-10 12.3.4.2

